Engineering -- an endless frontier
      home technology engineering branches engineer history essays bibliography  
          industrial revolution    second industrial revolution    information revolution  
Engineering the information age

Research and development boomed in all fields of science and technology after World War II, partly because of the Cold War and the Sputnik effect.  The explosion of engineering research, which used to lagged behind natural science, was especially impressive, as can be seen from the relative expansion of graduate education.  Engineering was also stimulated by new technologies, notably aerospace, microelectronics, computers, novel means of telecommunications from the Internet to cell phones.  Turbojet and rocket engines propelled aeronautic engineering into unprecedented height and spawned astronautic engineering.  Utilization of atomic and nuclear power brought nuclear engineering.  Advanced materials with performance hitherto undreamed of poured out from the laboratories of materials science and engineering.  Above all, microelectronics, telecommunications, and computer engineering joined force to precipitate the information revolution in which intellectual chores are increasingly alleviated by machines.

To lead the progress of these sophisticated technologies, engineers have remade themselves by reforming educational programs and expanding research efforts.  Intensive engineering research produced not only new technologies but also bodies of powerful systematic knowledge: the engineering sciences and systems theories in information, computer, control, and communications.  Engineering developed extensive theories of  its own and firmly established itself as a science of creating, explaining, and utilizing manmade systems.  This period also saw the maturation of graduate engineering education and the rise of large-scale research and development organized on the national level.

So far the physical sciences – physics and chemistry – have contributed most to technology.  They will continue to contribute, for instance in the emerging nanotechnology that will take over the torch of the microelectronics revolution.  Increasingly, they are joined by biology, which has been transformed by the spectacular success of molecular and genetic biology.  Biotechnology is a multidisciplinary field, drawing knowledge from biology, biochemistry, physics, information processing and various engineering expertise.  The cooperation and convergence of traditional intellectual disciplines in the development of new technology is the trend of the future.

 



References

Abbate, J. 1999.  Inventing the Internet.  Cambridge: MIT Press.

Abramson, A. 2003.  A History of the Television: 1942-2000.  Jefferson, NC: McFarland & Co.

Adam, J. 1996.  Architects of the net of nets.  IEEE Spectrum, 33(9): 57-63.

Bennett, S. 1993.  A History of Control Engineering: 1930-1955.  London: IEE Press.

Berstein, J. 1984.  Three Degrees Above Zero: Bell Labs in the Information Age.  New York: Charles Scribner’s Sons.

Black, H. S. 1977.  Inventing the negative feedback amplifier.  IEEE Spectrum, 14(12): 55-61.

Bray, J. 1995.  The Communications Miracle.  New York: Plenum.

Brinkman, W. F. and Lang, D. V. 1999.  Physics and the communications industry.  Review of Modern Physics, 71: S480-8.

Bud, R. 1993.  The Uses of Life: A History of Biotechnology.  New York: Cambridge University Press.

Campbell-Kelly, M. and Aspray, W. 1996.  Computer: A History of the Information Machine.  New York Basic Books.

Ceruzzi, P. E. 1998.  A History of Modern Computing.  Cambridge: MIT Press.

Chabert, J. 1999.  A History of Algorithms.  Berlin: Springer.

Chaffee, C. D. 1988.  The Rewiring of America: The Fiber Optics Revolution.  Boston: Academic Press.

Chaffee, C. D. 1988.  The Rewiring of America: The Fiber Optics Revolution.  Boston: Academic Press.

Cowan, Robin. 1990.  Nuclear power reactors: A case of technological lockin.  Journal of Economic History, 50: 541-68.

Gallager, R. G. 2001.  Claude E. Shannon: a retrospective on his life, work, and impact.  IEEE Transactions on Information Theory, 47: 2681-96.

Gappmair, W. 1999.  Claude E. Shannon: the 50th anniversary of information theory.  IEEE Communications Magazine, 37(4): 102-5.

Ghista, D. N. 2000.  Biomedical engineering: yesterday, today, and tomorrow.  IEEE Engineering in Medicine and Biology, 19(6): 23-8.

Gillies, J. and Cailliau, R. 2000.  How the Web was Born.  New York: Oxford University Press.

Gloyma, E. 1986.  Environmental engineering – historical, current, and future perspectives.  Journal of Environmental Engineering, 12: 812-26.

Hafner, K. and Lyon, M. 1996.  Where Wizards Stay Up Late: The Origin of the Internet.  New York: Touchstone.

Haughton, J. 1999.  A Brief History of the Future: The Origin of the Internet.  London: Weidenfeld & Nicolson.

Heatley, D. J., Wisely, D. R., Neild, I., and Cochrane, P. 1998.  Optical wireless: the story so far.  IEEE Communications Magazine, 36(12): 72-5.

Hecht, J. 1999.  City of Light: The Story of Fiber Optics.  New York: Oxford University Press.

Hevner, A. R. and Berndt, D. J. 2000.  Eras of business computing.  Advances in Computers, 52: 1-90.

Holonyak, N. 1997.  The semiconductor laser: a thirty-five-year perspective.  Proceedings of the IEEE, 85: 1678-93.

Hong, S. 2001.  Wireless: From Marconi’s Black Box to the Audion.  Cambridge: MIT Press.

Hougen, O. A. 1977.  Seven Decades of Chemical Engineering.  Chemical Engineering Progress, 73(1): 89-104.

Ifrah, G. 2001.  The Universal History of Computing: From the Abacus to the Quantum Computer.  New York: Wiley.

Institute of Electrical Engineers. 1995.  100 Years of Radio, IEE Conference Publication 411.

Kilby, J. S. 1976.  Invention of the integrated circuit.  IEEE Transactions in Electron Devices, ED-23: 648-54.

Leiner, B. M., Cerf, V. G., Clark, D. D., Kahn, R. E., Kleinrock, L., Lynch, D. C., Postel, J., Roberts, L. G., Wolff, S. S. 1997.  The past and future history of the Internet.  Communications of the ACM, 40(2): 102-8.

Leinwoll, S. 1979.  From Spark to Satellite.  New York: Charles Scribner’s Sons.

Lundgreen, P. 1990.  Engineering education in Europe and the U.S.A., 1750-1930: The rise of dominance of school cultures and the engineering professions.  Annals of Science 47: 33-75.

McCartney S. 1999.  ENIAC: The Triumphs and Tragedies of the World’s First Computer.  New York: Walker.

Melliar-Smith, C. M. et al. 1998.  The transistor: an invention becomes a big business.  Proceedings of the IEEE, 86: 86-111.

Metropolis, N., Howlett, J., and Rota, G. eds. 1980.  A History of Computing in the Twentieth Century.  New York: Academic Press.

Millman, S., ed. 1984.  A History of Engineering and Science in the Bell System: Communication Sciences, 1925 – 1980.  AT&T Bell Laboratories.

Moore, G. E. 1998.  The role of Fairchild in silicon technology in the early days of “Silicon Valley.”  Proceedings of the IEEE, 86: 53-62.

Murray, C. and Cox, C. B. 1989.  Apollo: The Race to the Moon.  New York: Simon & Schuster.

Naughton, J. 2000.  A Brief History of the Future: the Origin of the Internet.  London: Weidenfeld & Nicolson.

Pierce, J. R. 1968.  The Beginning of Satellite Communication.  San Francisco: San Francisco Press.

Pierce, J. R. 1973.  The early days of information theory.  IEEE Transaction on Information Theory, IT-19: 3-8.

Pollack, S. V. 1982.  The development of computer science.  In Studies in Computer Science, ed. S. V. Pollack, Washington, D.C.: The Mathematical Association of America, pp. 1-51.

Ponton, J. 1995.  Process systems engineering: halfway through the first century.  Chemical Engineering Science, 50: 4045-4059.

Rappartport, T. S., Buehrer, A. R. M., and Tranter, W. H. 2002.  Wireless communications: past events and future perspective.  IEEE Communications Magazine, 40(5): 148-61.

Reid, R. T. 1985.  The Chip.  New York: Random House.

Riordan, M. and Hoddeson, L. 1997.  Crystal Fire.  New York: Norton.

Rojas, R. and Hashagen, U. eds. 2000.  The First Computers – History and Architectures.  Cambridge: MIT Press.

Rosenberg, R. 1984.  The origin of EE education.  IEEE Spectrum 21(7): 60-8.

Ross, I. M. 1998.  The invention of the transistor.  Proceedings of the IEEE, 86: 7-28.

Schaller, R. R. 1997.  Moore’s law: past, present, and future.  IEEE Spectrum, 34(6): 53-9.

Seitz, F. 1998.  Electronic Genie.  Urbana: University of Illinois Press.

Shapiro, S. 1997.  Splitting the difference: The historical necessity of synthesis in software engineering.  IEEE Annals of the History of Computing, 19: 20-54.

Smith, R. E. 1989.  A historical overview of computer architecture.  IEEE Annals of the History of Computing, 10: 277-303.

Solymar, L. 1999.  Getting the Message.  New York: Oxford University Press.

Spiegel, J. van der, Tau, J. F., Ala’ilima, T. F., and Ang, L. P. 2000.  The ENIAC: History, operation, and reconstruction in VLSI.  In Rojas and Hashagen (2000), pp. 121-89.

Spitz, P. H. 1988.  Petrochemicals: The Rise of an Industry.  New York: John Wiley & Sons.

Stix, G. 1988.  Moon lander.  IEEE Spectrum 25: 76-82.

Stone, A. 1997.  How America Got On-line.  Armonk, NY: M. E. Sharpe.

Terman, F. E. 1962.  Electrical engineering education today.  Proceedings of the IRE, 50: 955-6.

Terman, F. E. 1976.  A brief history of electrical engineering education.  Proceedings of the IEEE 64:1399-1406; reprinted in 86:1792-1800.

Thompson, P. T. and Grey, D. 1995.  50 years of civilian satellite communications.  In IEE (1995), pp. 199-206.

Vickers, R. and Vilmansen T. 1986.  The evolution of telecommunications technology.  Proceedings of IEEE, 74: 1231-45.

Williams, M. R. 1985.  A History of Computing Technology.  Englewood Cliffs, NJ: Prentice-Hall.

Wintermantel, K. 1999.  Process and product engineering – achievements, present and future challenges.  Chemical Engineering Science, 54: 1601-20.

Wolbarst, A. B. 1999.  Looking Within: How X-Ray, CT, MRI, Ultrasound, and Other Medical Images Are Created, and How They Help Physicians Save Lives.  Berkeley: University of California Press.